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BUCKLING OF IMPERFECT SANDWICH
CYLINDERS UNDER AXIAL COMPRESSION

R. C. TENNYSON and K. C. CHAN
University ofToronto, Institute for Aerospace Studies, Toronto, Ontario, Canada M3H 5T6

Abstract-An analytical study has been carried out to determine the effect of axisymmetric shape
imperfections on the compressive buckling strength of sandwich cylinders having isotropic facings
and orthotropic, shear deformable cores. Buckling solutions are presented as a function of imper·
fection amplitude. wavelength and the core shear flexibility coefficients. Non-shear deformable cores
have also been considered and results compared to isotropic cylinders based on an "equivalent"
thickness parameter.

INTRODUCTION

Circular cylindrical shell structures are widely used in aerospace vehicles, such as rockets,
satellite components and aircraft fuselage sections. Although these structures are commonly
fabricated from metals, advanced composites are also gaining widespread usage because of
their higher strength/weight and stiffness/weight ratios. Prior to the advent of composites,
however, the development of sandwich construction emerged because of the significant
stiffness/weight improvements offered (Plantema, 1966). Most of the buckling analyses
performed on sandwich cylinders have considered isotropic (Leggett and Hopkins, 1949;
Teichmann et al., 1951; Stein and Meyers, 1952; Wanget al., 1955; Alrnroth, 1964; Barteld
and Mayers, 1967) and orthotropic facings (March and Kuenzi, 1957; Reese and Bert,
1969, 1974; Zahn and Kuenza, 1963) with one recent report dealing with composite skins
(Cheung and Tennyson, 1988). In all of these models, the core is regarded as "shear
deformable" and the cylinders are treated as geometrically "perfect" in shape.

Up to this point in time, no Koiter-type imperfection analysis has been carried out on
circular cylindrical sandwich cylinders under axial compression, to assess the extent to
which these structures are sensitive to geometric shape imperfections. This report presents
approximate analytical solutions for the buckling stress ofaxisymmetric imperfect sandwich
cylinders with isotropic facings as a function of imperfection amplitude, wavelength and
core shear stiffness. An "equivalent thickness" parameter is also defined that allows the
design engineer to estimate "knock-down" factors for sandwich cylinders based on isotropic
cylinder results, including the effect of random shape imperfections (Tennyson et al., 1971).

FORMULATION OF PROBLEM

Shell configuration
The axisymmetric imperfect sandwich cylinder geometry and coordinate system are

shown in Fig. 1. The cylinder geometry is characterized by its length L, radius of the median
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Fig. 1. Circular cylindrical shell with axisymmetric shape imperfections.
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Fig. 2. Geometrical definition of sandwich shell wall.

surface R, inner face thickness t I, outer face thickness t 2, core thickness c and imperfection
amplitude J1 (see Fig. 2).

Let the reference surface be the median surface of the geometrically perfect cylinder,
as defined by :

(1)

Thus the separation between the mid-surfaces of the inner and outer facings is

(2)

The coordinate system, x, y, z is measured with respect to the reference surface in the axial,
circumferential and radial directions, respectively. The components of displacement u, v
and It' of a point on the perfect shell are the displacements in the x, y and z directions.

Restrictions and assumptions
The following restrictions apply to the analytical model:

(I) Both facings are made of the same isotropic material.
(2) The core is orthotropic with one axis of orthotropy parallel to the axis of the

cylinder.
(3) The core and facings have uniform elastic properties.
(4) Facings and core are of constant thickness throughout the shell wall. The two

facings may have different thicknesses.
(5) There are no initial wrinkles in the facings, i.e. the separation between the facings

is constant.
(6) There is no failure of bonding between facings and core.
(7) Facings are sufficiently thin (compared to the core) to be treated as membranes,

i.e. the facings have in-plane stiffness but no flexural stiffness about their mid-surfaces.
(8) The shell thickness is small compared with the radius of curvature R.
(9) The cylinder is sufficiently long to ignore end boundary conditions.
(IO) There is no intercell buckling.
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The following assumptions are made in the analysis:

(I) Displacements u, t', and ware small compared with the plate thickness.
(2) Strains Ex, Ey and Yxy are small compared to unity (small strain theory).
(3) The core carries no in-plane stress.
(4) Normal stiffness of the core is infinite so that instability associated with wrinkling

of facings and other normal strain effects is not included. In practice, sandwich cylinders
with honeycomb core will not fail by wrinkling of facings when there is no failure ofbonding
between facings and core.

(5) The transverse normal stress is negligible, i.e. a: = O.

EQUILIBRIUM AND COMPATIBILITY EQUATIONS

Strain-displacement relations
Using the nonlinear Karman-Donnell strain-displacement relations, unit strains at a

point in the shell can be expressed as,

(3)

The condition of zero normal strain is the result of the assumption that the transverse
normal stiffness is infinite. This also implies that wis not a function of z. For thin shells, ii
and v may be assumed to vary linearly in the Z direction. The relations between the
displacement components u, v and w of the deformed median surface and the displacement
components ii, vand wof a point in the shell are:

ii = u-zp... v= V-ZPy, w= w, (4)

where Px and Py can be interpreted physically as the components of change of slope of the
normal to the undeformed median surface.

When the thickness of the facings is sufficiently small compared with the core, and
when the transverse core shear strain is small, the strains for the mid-surfaces of the facings
can be approximated by the strains at the facing and core interface. In this assumption, the
facings are effectively considered to be membranes.

Thus by substituting eqn (4) into eqn (3) the strain-displacement relations become,

o opx 0 op,. 0 (opy oPx) 0
Ex = Ex-Z-;-, e.. =e,.-z-;-, Yx,·=Yxv- Z -;-+-;- , 1y:=Yy"ux . . uy . . ux uy

h h d' C . 0 0 0 0 dO' bwere t e me Ian surlace strams Ex, Ey, 1xy' 1.1': an 1x: are gIven y :

o OU I (OW)2 0 OV w I (OW)2
ex = ox + 2 ox ' Ey = oy + R+ 2 oy ,

o ov ou ow ow 0 ow 0 ow
1xy = ox + oy + ox oy' 1.1': = oy -Py, 1xz = ox -Px

1x: = 12" (5)

(6)

assuming the median surface displacements u, v do not vary in the Z direction. The initial
stress-free lateral deviation w of the median surface is assumed to be small, but finite values
are also permissible provided that:
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l
owolIWol «R and AX «1. (7)

Shallow shell theory requires that the radius of curvature of the shape imperfection
cannot be excessively small as expressed by ;

(8)

The modified strain-displacement relations for the median surface including the initial
deviation term Wo are:

o ov au ow ow oWoow ow oWo
Yxy = ax + oy + ax oy + ax oy + ax oy ,

o ow 0 oW
Yl'Z = ~ - {3,., Yx- = ~- {3x-. uy . - ux

STRESS-STRAIN RELATIONS

(9)

Facings
The in-plane stress-strain relations for the isotropic facings in a plane stress state are:

(10)

where Ef = modulus of elasticity of facings.
Stress-strain relations in terms of {3n {3y and the median surface strains e~, e~ and Y~,.

can be obtained by substituting eqn (5) into eqn (10) :

(II)

Core
Assuming the core resists only transverse shear and does not carry any in-plane stresses,

then the stress-strain relations for the core are:

Shell forces and moments
An equivalent system of force and moment resultants is considered to be acting at the

median surface of an element of the shell, as given by the following definitions:
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Stress resultants:

Transverse shear stress resultants:

Moment resultants:

1021

(13)

(14)

(15)

where the integration is taken across the whole shell wall and hI, h2 are the distances of the
middle surfaces of the inner and outer facings, respectively, from the median surface of the
total shell wall as depicted in Fig. 2.

After performing the integration in eqn (13), using the expressions for the in-plane
stresses (lx, (lyand 'txy from eqn (11), the in-plane stress resultants in terms of Px, py and the
median surface strains are:

(16)

The transverse shear stresses 'ty% and 'tx% in the facings are equal to the transverse shear
stresses in the core at the facings, and vanish on the free surfaces. Assuming a linear
variation of transverse shear stresses across the facings and using eqn (12) for the transverse
shear stresses in the core, the transverse shear stress resultants, after integration ofeqn (14),
become:

(17)

Again, using expressions for in-plane stresses from eqn (II), the moment resultants,
after integration of eqn (15), become:

(18)

!'AS H.lIlo-.
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With the definition of the median surface given by eqn (J), the coupling between in­
plane strains and the rotation of the normal disappears. and the stress and moment
resultants simplify to:

A 00 A 00 A [)
N r = (1- (s,. +vey ), N,. = (l-v2) (£1' +VB,), N,) = 2(1 +v) i'x, (19)

M = -D (apr +vap,.) (ap,. ap.,) _ - D(l- v) (a..PI af3.,.)
x ax ay' M" = - D aJ: + v ax . Mx\· - 2 ax + oy .

(20)

where the in-plane stiffness (A) and bending stiffness (D) parameters are given by:

(21 )

(22)

Equilibrium equations
When the transverse normal stiffness of the sandwich shell is infinite, the equations of

force and moment equilibrium are the same as those for conventional cylindrical shells.
For a thin circular cylindrical shell the equilibrium equations are:

Equilibrium of horizontal forces:

aN., + oNxy _ 0 aN" + aNx,\' == o.
ax oy -, oy ax

Equilibrium of vertical forces:

(23)

(24)

Equilibrium of moments:

(25)

An Airy stress function is defined such that it will satisfy the equilibrium equations
{eqn (23)] identically, Le.

(26)

By substituting for M" M." and M xy from eqn (20) into eqn (25), Qx and Q.v can be expressed
in terms of fJx and fJ... as:
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(27)

Replacing Qx and Qy in the above equations by expressions from eqn (17), the relations
between wand {3." {3y are:

{3<- ow =~[02{3x + (I+v) o2{3y + (I-v) 02{3xJ
. ox Gxh ox2 2 ox oy 2 oy2

(3<- ow =~[02{3y + (l+v) o2{3x + (I-v) 02{3yJ.
. oy G,.h oy2 2 ox oy 2 ox2 (28)

Substituting for Qx and Qy from eqn (27) into eqn (24), the equilibrium equation for
transverse normal forces becomes:

(29)

Compatibility equation
After eliminating u and v from the median surface strain-displacement relations [eqn

(9)], an equation for the lateral deflection w in terms of the median surface strains s2, B~

and y2y is obtained: .

(30)

The median surface strains can of course be replaced by the stress resultants using the
following Hooke's law relations:

o 2(1 +v)
Yxy = A NxY" (31)

Hence one can derive the final form of the compatibility equation in terms of the Airy stress
function [see eqn (26)] and the lateral deflection w:

(32)

SPECIAL CASES

(a) Isotropic core (Gx = Gy)
When the core is isotropic, the equilibrium equation for transverse normal forces can

be expressed in terms of wand F only. From eqn (17),
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Substituting for /3x and /3 .. into the equilibrium equation [eqn (29)] yields,

Eliminating the term (iJQx/iJx) +(iJQy/iJy) from eqn (33) and eqn (24) gives:

(34)

The above equilibrium equation together with the compatibility equation, eqn (32), are the
two governing equations in terms of the two unknowns wand F for sandwich cylinders
with isotropic cores.

(b) Non-shear deformable core (G = (0)
The equilibrium equation for sandwich cylinders with a non-shear deformable core

can be immediately obtained by setting the core shear modulus G to infinity, i.e.

(35)

The above equation and the compatibility equation, eqn (32), are exactly the same as those
for homogeneous isotropic shells except for the stiffness terms A and D. Thus all previous
analytical results for isotropic cylinders can be immediately applied to sandwich cylinders
with non-shear deformable cores when the appropriate in-plane stiffness A and bending
stiffness D terms are used.

(c) Isotropic cylinder-no core (c = 0)
By setting c = 0,

£t3

A = £t and D = 12(l-v2)

where t = t l +t2, and the previous equilibrium and compatibility equations reduce to the
isotropic cylinder case.

BUCKLING ANALYSIS

Prebuckling axisymmetric solution
Assuming an initial axisymmetric shape imperfection, one can write the prebuckling

lateral deflection function as
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w(x,y) = w*(x)

1025

where the asterisk denotes the prebuckling solution.
The solution for the Airy stress function in the prebuckled state is of the following form :

where No is the axially applied load per unit run at the edge.
For the axisymmetric solution,

Px(x,y) = P:(x) and P.•,(x,y) = o.

(36)

(37)

After substituting these equations into eqns (28), (29) and (32), the four nonlinear governing
equations reduce to three linear equations in F*, w* and P: for the prebuckling state, i.e.

1 (}4F* 1 (}2 W*
A (}x4 = R (}x 2 '

(38)

The initial axisymmetric shape imperfection can be written as,

(
21tX)

Wo(X) = -p.cos T . (39)

The order of magnitude of the imperfection amplitude p. relative to the imperfection
wavelength lx, as required by eqn (8), is given by

4p.1t2

7~O(I).
x

From physical considerations, a particular solution is taken to be in the form :

(21tX) (21tX). (21tX)F*(x) = Ncos T' w*(x) = K+Mcos T' P*(x) = Psm T .

(40)

(41)

Substituting the above assumed solution into three linear differential equations, eqn (38),
results in three linear algebraic equations from which N, M and P can be easily solved, i.e.

where

0: = (AD) 1/2, Y = (A
D

)1/2, .., _ 0:
,"x - RhG

x

I
p--­- J2l

x
'

and
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Fig. 3. Prebuckling axisymmetric lateral deflection as a function of axial shear core flexibility.

. NoR
A.=~. (43)

Axisymmetric buckling ofa perfect cylinder
An interesting consequence of eqn (42) is that it is possible to obtain an axisymmetric

buckling solution for the perfect sheU at this stage of the analysis. For the case of a perfect
shell, p. vanishes and for non-zero values of M, the deflection mode as specified by eqn (41)
then corresponds to the axisymmetric buckling mode of the perfect shell. The condition for
non-zero values ofM requires the denominator to vanish. Thus, A. = ,1.0 and the axisymmetric
buckling coefficient (,1.0) for the perfect shell is obtained by minimizing ,1.0 with respect to
the axial wave number p. The equation OAoOp2 = 0 has two real solutions, namely:

2 I ?

P = 2(I-Xx)' p. = 00. (44)

When the axial core shear flexibility coefficient Xx ~ 1, p2 = 00 is the only real root.
Substituting eqn (44) into the equation for ,1.0 yields the axisymmetric buckling coefficient
,1.0 for the perfect cylinder:

Ao = I - ;< when Xx ~ I

when Xx> 1. (45)

Growth ofprebuck/ing lateral deflections
The amplitude of the lateral deflection M grows under increasing load. Ofengineering

interest is the imperfection wave number which gives the largest deflection for a given load.
From eqn (42), the value of M becomes a maximum, for a given load A and imperfection
amplitude p., when ,1.0 is a minimum. As noted earlier, the axial wave number which
minimizes ,1.0 is the axisymmetric buckling wave number for the perfect shell. Thus, imper­
fections in the shape of the classical axisymmetric buckling mode will yield the largest
prebuckling deflection. Figure 3 illustrates the prebuckling deflection for various axial wave
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numbers at a given load. It is also evident that the prebuckling deflection increases with
increasing axial core shear flexibility.

Bifurcation buckling solution
Under increasing load the amplitude ofthe lateral deflection M will grow in a hyperbolic

fashion until the bifurcation point is reached, where there is an intersection of equilibrium
paths (Fig. 4). Let us define the terms w(x,y),J(x,y), bAx,y) and bv(x,y) associated with
bifurcation from the fundamental axisymmetric state. Hence, one can write,

F(x,y) = - !Noy2+F*(x)+f(x,y), w(x,y) = w*(x)+w(x,y)

PAx,y) = P~(x)+bAx,y), Py(x,y) = by(x,y). (46)

The bifurcation point can be determined by considering the existence of a second
solution to the governing equations which is infinitesimally close to the fundamental
solution. With w(x,y), f(x,y), b..(x,y) and by(x,y) representing infinitesimal deviations
from the fundamental state, after substituting eqn (46) into the governing equations [eqns
(28), (29), (32)], the resulting equations can be linearized with respect to w(x,y) andf(x,y)
to obtain the linearized equations of neutral equilibrium:

Compatibility equation:

(47)

Equilibrium equations:

b _ ow _!!- [02bx + (l +v) 02by + (I-v) 02bxJ
x oy - Gxh ox2 2 ox oy 2 oy2

b _ oW = !!- [iJ
2
by + (1 +v) 02bx + (I-v) 02byJ

y iJx G,.h iJy 2 2 ox oy 2 iJx2

D[03bx iJ3by 03bx iJ3bl'J 2CXA iJ2w
ox3 + ox2oy + ox oy2 + oy3 = - if ox2

2yAp2JJ. (21tX) 02f YCXAJJ. (21tX)02W I 0
2
/

+ (Ao-A)R cos T oy2 - (Ao-A)R cos T oy2 - Rox2' (48)

A rigorous solution of the above coupled equations of neutral equilibrium with given
boundary conditions is extremely difficult. However, an approximate solution can be
obtained using an assumed mode of the form,
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_ ex (2i+ I)1tX 1t)'
w(x,y) =L K; cos I cos T

,= 0 x .r

Ki = 0 for i < O.

(49)

Substituting the assumed mode into the compatibility [eqn (47)] and equilibrium
equations [eqn (46)], exact particular solutions for f, bx and b" are obtained in terms of the
coefficients Ki , i.e.

ex (2i+1)1tx 1ty x. (2i+I)1tx . 1ty
f(x,y) = .2: H; cos I cos T' bx ==2: Ai sm I sm T'

I=~l x y 1=0 X Y

ex (2i+ I)1tX . 1ty
b l =2: Bi cos I sm T

1= 0 X Y

where

ali = 1+;[(2i+l)2P2+ (1~V)r2l a2i = 1+;[r2+ (I~V)(2i+1)2p2J

b
l
; = Xx (1 +V)~2i+ l) pr, b2; = XI' (1 +V)~2i+ I) pro

(50)

(51 )

Since eqn (50) satisfies the first three governing equations exactly, Galerkin's procedure
can then be applied to the remaining equilibrium equation to obtain an approximate
solution for the buckling stress. Substituting eqn (50) into the last equilibrium equation
yields the following error function:

A x (2i+ I )1tX 1ty
~(x'Y)=(2R)2i_L;.2SiCOS Ix cosT;'

In the Galerkin procedure, the error function ~(x,y) is multiplied by

(2)+1)1tX 1ty .
cos l< •cos T; for J == 0, 1,2, ... ,

integrated over the whole shell and equated to zero. Thus,

If (2)+ 1)1tX 1ty
~(x,y) cos Ix cos T; dx dy = 0

(52)

(53)

yields an infinite system of linear algebraic equations for the coefficients K; in the following
form:



where

Buckling of imperfect sandwich cylinders 1029

(54)

(2tl'Yp 2,21.0) 2 I
Vi = ().0-A)2 • [(2j+ 1)2 p2+,2]

-tl'Y,2). 4tl'Yp2,2ico{(2i_I)2 p2 (2i+ 1)2 p2 }
Vi = ().O-A.) - (AO-A) [(2i-l)2 p2+,2F + [(2i+ 1)2p2+,2]2

. 2' 4(2i+ 1)4 p4
W, = k, -4(21+ I) p-X + [(2i+ 1)2p2+,2F

ki = [a2i(2i+ 1)4 p4- (b li +b2J(2i+ 1)3p3,+ (ali +a2; )(2i+ 1)2p2,2

- (b Ii + b2i )(2i+ I )p,3 + a Ii ,4]/(a lia2i -b Iib2;). (55)

ANALYTICAL RESULTS

Sandwich cylinders can be roughly classified into three categories according to their
core shear flexibility:

(a) stiff core sandwich cylinders with Xx, Xy < 0.1 ;
(b) moderately flexible core sandwich cylinders with 0.1 ~ Xx or 0.1 ~ XV' and X...

Xy < 0.9;
(c) weak core sandwich cylinders with Xx or Xy > 0.9.

Because of the assumption that the facings' flexural stiffness about their middle surfaces
can be neglected, the results presented for weak core cylinders are not expected to be
accurate.

First term approximate solution
Using only the first term

nx ny
K o cos -I •cos -I

x y

in the assumed buckling mode [eqn (49)], the first equation from the set of equations [eqn
(54)] is obtained. For a non-trivial solution, K o ¥- 0 gives:

(56)

or

(57)

The above equation can be written as a cubic polynomial of A:

(58)

where
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11):r 2

E 1 =-4,.p.
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P = -(2)'0+)'1 +E 1), Q = ).6+2)'0)'1 +).oE I -E:

" ko p:
I.) = --, + --~,--'""'

4p' (p' +r)-

(59)

Perfect cylinders
The buckling load for a geometrically perfect sandwich cylinder can be easily obtained

by setting 11 = 0 in eqn (57), i.e.

(60)

Of particular interest is the case of axisymmetric buckling of the perfect cylinder. Thus,
setting r = 0, the resulting expression for ). is minimized with respect to p, to give:

for Xx ~ 1.

• Xx. 2 2 !"

I·u = 1- 2" with p = (I-XX> lor Xx < I

. 1
)'a = 2- with p2 = oc;

Xx
(61)

This ofcourse is the same result as that obtained in eqn (45) except that p differs by a factor
of 2 due to the difference in the definition of the buckling modes.

Because of the orthotropy of the core, the expression for k o is complicated [see
eqn (55)]. However it simplifies considerably for the case of an isotropic core and the
corresponding buckling stress is,

(62)

As shown by Zahn and Kuenzi (1963), perfect sandwich cylinders with isotropic cores
buckle in the axisymmetric mode and thus the buckling coefficient is given by eqn (61). In
the limiting case of a non-shear deformable core eqn (62) reduces to,

(63)

This is the same expression as that for an isotropic cylinder and the buckling load is obtained
by minimizing A.. Any combination of p and r that satisfies

(64)

will yield a minimum A. = 1.
As mentioned earlier, because of the complexity of the expression for the case of an

orthotropic core, it is not easy to analytically minimize A. with respect to p and r. Conse­
quently, numerical minimization was carried out to evaluate the "classical" buckling stress
for sandwich cylinders for varying core shear flexibility coefficients Xx> Xl" as shown in Figs
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Fig. 5. Effect of orthotropic core shear stiffness ratio (1/1) on compressive buckling strength of
sandwich cylinders with isotropic facings.
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Fig. 6. Buckling coefficient for perfect sandwich cylinder with orthotropic core.

5 and 6. Results of Zahn and Kuenzi (1963) are reproduced in the case of cP = 5, where
cP = 'Xylxx = Gx/G.... For large values of cP (e.g. 7, 10), the plot in Fig. 5 shows that it is
possible to have a buckling load lower than the shear crimpingt load (Zahn and Kuenzi,
1963) for 'Xx ~ I in a sandwich cylinder with an orthotropic core. Numerical results indicated
that for cP ~ 2.0 the sandwich cylinder buckles in the axisymmetric mode and thus the
buckling coefficient is given by the simple expressions in eqn (61). For design purposes,
buckling load and stress can be calculated using the following relations:

Buckling load:

Buckling stress:

(65)

where t. = the "equivalent thickness", which is defined as the thickness of an "equivalent"
isotropic cylinder having the same ratio of in-plane to bending stiffness as the sandwich
shell, i.e. from eqn (43),

t Special form of general instability having short buckle wavelength, due to low transverse shear modulus of
core (Sullins el al., 1969).
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Fig. 7. Effec:t ofimperfectior. amplitude on A, vs K ' for isotropic: ~ores.
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Imperfect cylinders
The cubic eigenvalue eqn (58) yields the bifurcation load coefficient ).• for an axisym­

metric imperfect sandwich cylinder by minimizing ~ with respect to the circumferential
wave number r for a given imperfection wave number p. Because of the complexity of the
equation, the minimization is done numerically and the smallest real root of the cubic
eigenvalue equation is selected.

For the case of a non-shear deformable core (Xx = Xv = 0), the cubic eigenvalue
equation reduces to that for an isotropic cylinder when the IlondimensionaI imperfection
parameter is taken in the form "'* = )J,lt~, Thus the analytical results for isotropic shells can
be applied to"stiff-core" sandwich cylinders.

The next class of cylinders considered is that for isotropic cores (Xx = 'X.},). Figures 7,
8 and 9 are plots of the bifurcation load coefficient ;"S versus imperfection amplitude ()J,k)
and the wave number parameter K 2 == p2lp: where p; == 1{[2(1- x-.)] is the classical axisym­
metric buckling mode wave number. It can be seen that there exists a critical axial wave
number where the degradation is largest for a given imperfection amplitude. The dashed

1.0

>.. fL.
08

o~

::~~~-~-==~-~==~-~==0.6

0.2 81
0.9
1.0

o 02 04 06 DB 10 12 14 16 IE ..

Fig. 8. Effect of imperfection amplitude flK on .I" vs K 2 for isotropic: cores.
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Fig. 9. Effect of imperfection amplitude ilK on A., vs K 2 for isotropic cores.

line in Fig. 7 joins the critical wave number for each imperfection amplitude. The critical
wave number decreases with increasing imperfection. From these three figures it can also
be seen that critical K 2 decreases with increasing core shear flexibility. Figure 10 dem­
onstrates that imperfections can lead to buckling loads below the shear crimping value of
the "perfect" cylinder, although these results maybe somewhat inaccurate for Xx > 0.9.

For the case of orthotropic cores, it is apparent from Fig. 12 that the circumferential
core shear flexibility coefficient Xy has little effect on the critical buckling mode wave number
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Fig. 10. Effect of imperfection amplitude on A., vs I, for isotropic cores.
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Fig. 12. Effect of X,. on imperfect orthotropic honeycomb sandwich cylinders.

(K 2
). However, Fig. 11 reveals that the critical K 2 parameter decreases with increasing

axial core shear flexibility. In general it can be noted that increasing core shear flexibility
Xx> XI' decreases the buckling strength.

From an engineering design viewpoint, it is useful to plot a "knock-down" factor
corresponding to the minimum buckling load (,l'm) associated with the critical wave number,
as a function of the non-dimensional imperfection parameter /Jot. Figures 13 and 14 present
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0.2 0.4 0.6 08 1.0
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Fig. 13. Effect of core shear flexibility coefficient on,i* vs IJ.K for isotropic core.
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Fig. 14. Effect of axial core shear flexibility (Xx) on,i* vs IJ.K for orthotropic core.
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Fig. 15. Effect of axisymmetric shape imperfections and circumferential core shear flexibility (X,·)
on compressive buckling strength for orthotropic cores.

such plots for isotropic and orthotropic cores, respectively. The "knock-down" factor is
defined as ).* = ).mlAn where ),c is the perfect cylinder buckling coefficient, as determined
from eqn (60). Again it is evident that decreasing the core flexibility coefficients decreases
A*. However, it is interesting to note from Fig. 15, that for a fixed value of Xx = 0.5,
increasing the circumferential core flexibility coefficient Xy actually decreases ).*. In each of
these three graphs, the non-shear deformable core case is shown, which corresponds to the
isotropic cylinder solution as discussed earlier. In most instances, it provides a lower bound
curve for the solutions obtained.

CONCLUSIONS

Solutions have been obtained for axisymmetric imperfect sandwich cylinders having
isotropic facings and orthotropic shear deformable cores. Shear core flexibility has been
shown to have a significant effect on the buckling strength, both for the perfect and imperfect
cylinders. For very stiff cores, buckling behaviour is very similar to that of an isotropic
shell based on an "equivalent" thickness formulation. Finally, it is worth noting that the
"knock-down" curves presented can be used to assist the design engineer in calculating the
load reductions for sandwich cylinders containing random imperfections following the
methodology described in Tennyson et al. (1971) providing an estimate of the maximum
root mean square imperfection amplitude is known.
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